We propose a sampling-based method for computing the tensor ring (TR) decomposition of a data tensor. The method uses leverage score sampled alternating least squares to fit the TR cores in an iterative fashion. By taking advantage of the special structure of TR tensors, we can efficiently estimate the leverage scores and attain a method which has complexity sublinear in the number of input tensor entries. We provide high-probability relative-error guarantees for the sampled least squares problems. We compare our proposal to existing methods in experiments on both synthetic and real data. Our method achieves substantial speedup -- sometimes two or three orders of magnitude -- over competing methods, while maintaining good accuracy. We also provide an example of how our method can be used for rapid feature extraction.
翻译:我们建议了一种基于抽样的方法来计算数据分解的电压环(TR)分解。该方法使用通过抽样抽样的分数,交替的最小方块,以迭接的方式适应TR核心。通过利用TR 数的特殊结构,我们可以有效地估计杠杆分数,并获得一种在输入分数数量上具有复杂分线的方法。我们为抽样的最小方块问题提供了高概率相对性保证。我们比较了我们的提案与合成数据与实际数据试验的现有方法。我们的方法在保持准确性的同时,在竞争方法上实现了大幅度的加速,有时是两或三个数量级的加速。我们还提供了一个例子,说明我们的方法如何能够用于快速地貌提取。