Non-local self-similarity based low rank algorithms are the state-of-the-art methods for image denoising. In this paper, a new method is proposed by solving two issues: how to improve similar patches matching accuracy and build an appropriate low rank matrix approximation model for Gaussian noise. For the first issue, similar patches can be found locally or globally. Local patch matching is to find similar patches in a large neighborhood which can alleviate noise effect, but the number of patches may be insufficient. Global patch matching is to determine enough similar patches but the error rate of patch matching may be higher. Based on this, we first use local patch matching method to reduce noise and then use Gaussian patch mixture model to achieve global patch matching. The second issue is that there is no low rank matrix approximation model to adapt to Gaussian noise. We build a new model according to the characteristics of Gaussian noise, then prove that there is a globally optimal solution of the model. By solving the two issues, experimental results are reported to show that the proposed approach outperforms the state-of-the-art denoising methods includes several deep learning ones in both PSNR / SSIM values and visual quality.


翻译:基于本地的基于非本地的自异性低等级算法是图像分解的最先进方法。 在本文中, 通过解决两个问题提出了一种新的方法: 如何改进相似的匹配精度的补丁, 并为高西噪音建立合适的低等级矩阵近似模型。 对于第一个问题, 可以在本地或全球找到类似的补丁。 本地补丁匹配是为了在大街区找到相似的补丁, 这可以减轻噪音效应, 但补丁的数量可能不够。 全球补丁匹配是为了确定足够的相似补丁, 但补丁匹配的错误率可能更高。 基于这一点, 我们首先使用本地补丁匹配方法来减少噪音, 然后使用高斯补丁混合混合物模型来实现全球补丁匹配。 第二个问题是没有低等级矩阵近似模式可以适应高西噪音。 我们根据高西噪音的特点建立一个新模型, 然后证明该模型有全球最佳的解决方案。 通过解决这两个问题, 实验结果报告显示, 拟议的方法在 SSIM 和 视觉质量 中, 包括一些深层次的学习方法。

0
下载
关闭预览

相关内容

Python图像处理,366页pdf,Image Operators Image Processing in Python
最新《医学图像深度语义分割》综述论文
专知会员服务
94+阅读 · 2020年6月7日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员