Artificial Intelligence (AI) provides practical advantages in different applied domains. This is changing the way decision-makers reason about complex systems. Indeed, broader visibility on greater information (re)sources, e.g. Big Data, is now available to intelligent agents. On the other hand, decisions are not always based on reusable, multi-purpose, and explainable knowledge. Therefore, it is necessary to define new models to describe and manage this new (re)source of uncertainty. This contribution aims to introduce a multidimensional framework to deal with the notion of Value in the AI context. In this model, Big Data represent a distinguished dimension (characteristic) of Value rather than an intrinsic property of Big Data. Great attention is paid to hidden dimensions of value, which may be linked to emerging innovation processes. The requirements to describe the framework are provided, and an associated mathematical structure is presented to deal with comparison, combination, and update of states of knowledge regarding Value. We introduce a notion of consistency of a state of knowledge to investigate the relation between Human and Artificial intelligences; this form of uncertainty is specified in analogy with two scenarios concerning decision-making and non-classical measurements. Finally, we propose future investigations aiming at the inclusion of this form of uncertainty in the assessment of impact, risks, and structural modelling.


翻译:人工智能(AI)在不同应用领域提供了实际的优势。这正在改变决策者对复杂系统的认识方式。事实上,知识分子现在可以更广泛地看到更大的信息(再)源,例如大数据,现在知识分子可以更广泛地看到更大的信息(再源),另一方面,决策并不总是基于可重复使用、多用途和可解释的知识。因此,有必要确定新的模型来描述和管理这种新的(再)不确定性来源。这种贡献的目的是引入一个多层面的框架,以处理在人工智能背景下的价值概念。在这个模型中,大数据代表了价值的一个突出的层面(特征),而不是大数据的一个内在属性。人们更多地注意价值的隐藏层面,这可能与新出现的创新进程相联系。提供了描述框架的要求,并提出了相关的数学结构,以处理价值知识状况的比较、组合和更新。我们提出了一种知识状态的一致性概念,以调查人类和人工智能关系。在调查中,这种不确定性的形式在与关于决策和非阶级不确定性评估的两种情景的类比中得到了具体确定。最后,我们提议在将这种不确定性的模型和结构评估纳入这一形式中。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年12月16日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2015年3月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员