We present an isogeometric method for the analysis of Kirchhoff-Love shell structures which are composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretization is based on the one hand on the approximation of the mid-surface by a particular class of multi-patch surfaces, called analysis-suitable~$G^1$ [1], and on the other hand on the use of the globally $C^1$-smooth isogeometric multi-patch spline space [2]. We use our developed technique within an isogeometric Kirchhoff-Love shell formulation [3] to study linear and non-linear shell problems on multi-patch structures. Thereby, the numerical results show the great potential of our method for the Kirchhoff-Love shell analysis of geometrically complex multi-patch structures which cannot be modeled without the use of extraordinary vertices.
翻译:我们提出了一个分析Kirchhoff-love 外壳结构的等离子测量方法,这些结构由多个补丁组成,并可能具有特殊的脊椎,即价值不同于4的脊椎。提议的等离异性外壳分析方法,一方面基于某一类多批表面表面的中表面近似,称为分析可容性~G1$[1],另一方面则基于全球1美元等离子多批样样板空间的使用[2]。我们利用我们开发的在等离子测量Kirchhoff-lovel 外壳配方[3]中研究多批结构的线性和非线性外壳问题。因此,数字结果表明,我们分析具有巨大潜力的基尔choff-love多批外壳结构的方法,这些结构不使用特别的脊椎就无法建模。