Enterprise networks are one of the major targets for cyber attacks due to the vast amount of sensitive and valuable data they contain. A common approach to detecting attacks in the enterprise environment relies on modeling the behavior of users and systems to identify unexpected deviations. The feasibility of this approach crucially depends on how well attack-related events can be isolated from benign and mundane system activities. Despite the significant focus on end-user systems, the background behavior of servers running critical services for the enterprise is less studied. To guide the design of detection methods tailored for servers, in this work, we examine system event records from 46 servers in a large enterprise obtained over a duration of ten weeks. We analyze the rareness characteristics and the similarity of the provenance relations in the event log data. Our findings show that server activity, in general, is highly variant over time and dissimilar across different types of servers. However, careful consideration of profiling window of historical events and service level grouping of servers improve rareness measurements by 24.5%. Further, utilizing better contextual representations, the similarity in provenance relationships could be improved. An important implication of our findings is that detection techniques developed considering experimental setups with non-representative characteristics may perform poorly in practice.
翻译:企业网络是网络攻击的主要目标之一,因为其中包含了大量敏感和有价值的数据。发现企业环境中攻击事件的共同方法依赖于对用户和系统的行为进行模拟,以发现意外偏差。这一方法的可行性关键取决于与攻击事件有关的事件与良性和普通系统活动如何能很好地隔离开来。尽管对最终用户系统的重视很大,但对为企业提供关键服务的服务器的背景行为的研究较少。为了指导设计适合服务器的探测方法,在这项工作中,我们审查一个大型企业在10周内获得的46个服务器的系统事件记录。我们分析了事件日志数据中的稀有特征和来源关系的相似性。我们的调查结果显示,一般来说,服务器活动在时间上有很大差异,不同类型服务器的活动也不相同。然而,仔细考虑历史事件简介窗口和服务器服务级别分组将稀有性测量率提高24.5%。此外,利用更好的背景描述,证明关系中的相似性可以改进。我们发现的一个重要影响是,考虑到非代表性特征的实验性设置而开发的探测技术可能表现很差。