We propose a new unbiased estimator for estimating the utility of the optimal stopping problem. The MUSE, short for `Multilevel Unbiased Stopping Estimator', constructs the unbiased Multilevel Monte Carlo (MLMC) estimator at every stage of the optimal stopping problem in a backward recursive way. In contrast to traditional sequential methods, the MUSE can be implemented in parallel when multiple processors are available. We prove the MUSE has finite variance, finite computational complexity, and achieves $\varepsilon$-accuracy with $O(1/\varepsilon^2)$ computational cost under mild conditions. We demonstrate MUSE empirically in several numerical examples, including an option pricing problem with high-dimensional inputs, which illustrates the use of the MUSE on computer clusters.


翻译:我们提出一个新的公正估算标准,以估计最佳制止问题的效用。MUSE是“多层次无偏见制止模拟器”的缩略语,它以后向递归的方式在最佳制止问题的每个阶段构建了不带偏见的多层次蒙特卡洛(MLMC)估算标准。与传统的顺序方法相反,MUSE可以在多处理器可用时同时实施。我们证明MUSE具有有限的差异、有限的计算复杂性,并在温和条件下以1美元(1/\varepsilon>2美元)实现计算成本。我们在若干数字实例中展示了MUSE的经验,包括高维投入的选项定价问题,这说明了MUSE在计算机集群中的使用。

0
下载
关闭预览

相关内容

专知会员服务
81+阅读 · 2021年5月10日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月28日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员