We propose a new unbiased estimator for estimating the utility of the optimal stopping problem. The MUSE, short for `Multilevel Unbiased Stopping Estimator', constructs the unbiased Multilevel Monte Carlo (MLMC) estimator at every stage of the optimal stopping problem in a backward recursive way. In contrast to traditional sequential methods, the MUSE can be implemented in parallel when multiple processors are available. We prove the MUSE has finite variance, finite computational complexity, and achieves $\varepsilon$-accuracy with $O(1/\varepsilon^2)$ computational cost under mild conditions. We demonstrate MUSE empirically in several numerical examples, including an option pricing problem with high-dimensional inputs, which illustrates the use of the MUSE on computer clusters.
翻译:我们提出一个新的公正估算标准,以估计最佳制止问题的效用。MUSE是“多层次无偏见制止模拟器”的缩略语,它以后向递归的方式在最佳制止问题的每个阶段构建了不带偏见的多层次蒙特卡洛(MLMC)估算标准。与传统的顺序方法相反,MUSE可以在多处理器可用时同时实施。我们证明MUSE具有有限的差异、有限的计算复杂性,并在温和条件下以1美元(1/\varepsilon>2美元)实现计算成本。我们在若干数字实例中展示了MUSE的经验,包括高维投入的选项定价问题,这说明了MUSE在计算机集群中的使用。