In this paper we propose an efficient stochastic optimization algorithm to search for Bayesian experimental designs such that the expected information gain is maximized. The gradient of the expected information gain with respect to experimental design parameters is given by a nested expectation, for which the standard Monte Carlo method using a fixed number of inner samples yields a biased estimator. In this paper, applying the idea of randomized multilevel Monte Carlo (MLMC) methods, we introduce an unbiased Monte Carlo estimator for the gradient of the expected information gain with finite expected squared $\ell_2$-norm and finite expected computational cost per sample. Our unbiased estimator can be combined well with stochastic gradient descent algorithms, which results in our proposal of an optimization algorithm to search for an optimal Bayesian experimental design. Numerical experiments confirm that our proposed algorithm works well not only for a simple test problem but also for a more realistic pharmacokinetic problem.
翻译:在本文中,我们提出一个高效的随机优化算法,以寻找巴耶斯实验设计,从而实现预期信息收益最大化。 实验设计参数的预期信息收益的梯度由嵌套式期望给出, 使用固定数量内部样本的蒙特卡洛标准方法产生了偏差估计值。 在本文中, 我们运用随机多层次蒙特卡洛(MLMC)方法的理念, 我们引入了一个不带偏见的蒙特卡洛测算器, 用于使用每种样本的有限预期平方( ell_ 2美元) 和有限预期计算成本的预期信息收益的梯度。 我们的公正估计值可以与随机梯度梯度梯度下行算法相结合, 这导致我们提出优化算法以寻找最佳巴伊斯实验设计。 数值实验证实我们提议的算法不仅对简单的测试问题有效,而且对更现实的药理学问题有效。