In this paper we propose an efficient stochastic optimization algorithm to search for Bayesian experimental designs such that the expected information gain is maximized. The gradient of the expected information gain with respect to experimental design parameters is given by a nested expectation, for which the standard Monte Carlo method using a fixed number of inner samples yields a biased estimator. In this paper, applying the idea of randomized multilevel Monte Carlo (MLMC) methods, we introduce an unbiased Monte Carlo estimator for the gradient of the expected information gain with finite expected squared $\ell_2$-norm and finite expected computational cost per sample. Our unbiased estimator can be combined well with stochastic gradient descent algorithms, which results in our proposal of an optimization algorithm to search for an optimal Bayesian experimental design. Numerical experiments confirm that our proposed algorithm works well not only for a simple test problem but also for a more realistic pharmacokinetic problem.


翻译:在本文中,我们提出一个高效的随机优化算法,以寻找巴耶斯实验设计,从而实现预期信息收益最大化。 实验设计参数的预期信息收益的梯度由嵌套式期望给出, 使用固定数量内部样本的蒙特卡洛标准方法产生了偏差估计值。 在本文中, 我们运用随机多层次蒙特卡洛(MLMC)方法的理念, 我们引入了一个不带偏见的蒙特卡洛测算器, 用于使用每种样本的有限预期平方( ell_ 2美元) 和有限预期计算成本的预期信息收益的梯度。 我们的公正估计值可以与随机梯度梯度梯度下行算法相结合, 这导致我们提出优化算法以寻找最佳巴伊斯实验设计。 数值实验证实我们提议的算法不仅对简单的测试问题有效,而且对更现实的药理学问题有效。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
7+阅读 · 2020年3月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员