This paper proposes an attack-independent (non-adversarial training) technique for improving adversarial robustness of neural network models, with minimal loss of standard accuracy. We suggest creating a neighborhood around each training example, such that the label is kept constant for all inputs within that neighborhood. Unlike previous work that follows a similar principle, we apply this idea by extending the training set with multiple perturbations for each training example, drawn from within the neighborhood. These perturbations are model independent, and remain constant throughout the entire training process. We analyzed our method empirically on MNIST, SVHN, and CIFAR-10, under different attacks and conditions. Results suggest that the proposed approach improves standard accuracy over other defenses while having increased robustness compared to vanilla adversarial training.


翻译:本文建议采用攻击独立的(非对抗性培训)技术,提高神经网络模型的对抗性强健性,尽量减少标准准确性的损失。 我们建议在每个培训范例周围建立一个街区,使该街区内的所有投入都保持标签不变。 与以往遵循类似原则的工作不同,我们采用这一想法,即扩大培训范围,对每个培训范例都进行多次干扰,从该街区内抽调。 这些干扰是示范性的,在整个培训过程中保持不变。 我们在不同的攻击和条件下对MNIST、SVHN和CIFAR-10进行了经验分析。 结果表明,拟议方法提高了其他防御的标准准确性,同时比Vanilla对抗性培训更加稳健。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年10月22日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Top
微信扫码咨询专知VIP会员