Information Extraction (IE) aims to extract structural information from unstructured texts. In practice, long-tailed distributions caused by the selection bias of a dataset, may lead to incorrect correlations, also known as spurious correlations, between entities and labels in the conventional likelihood models. This motivates us to propose counterfactual IE (CFIE), a novel framework that aims to uncover the main causalities behind data in the view of causal inference. Specifically, 1) we first introduce a unified structural causal model (SCM) for various IE tasks, describing the relationships among variables; 2) with our SCM, we then generate counterfactuals based on an explicit language structure to better calculate the direct causal effect during the inference stage; 3) we further propose a novel debiasing approach to yield more robust predictions. Experiments on three IE tasks across five public datasets show the effectiveness of our CFIE model in mitigating the spurious correlation issues.
翻译:信息提取(IE)旨在从非结构化文本中提取结构性信息。在实践中,由数据集选择偏差造成的长期详细分布可能导致传统概率模型中实体和标签之间不正确的关联,也称为虚假关联。这促使我们提出反事实性 IE(CFIE)的新框架,目的是从因果推理的角度发现数据背后的主要因果关系。具体地说,1)我们首先为各种信息发布任务引入一个统一的结构性因果模型,描述变量之间的关系;2)与我们的数据通报(SCM)相比,我们随后产生基于明确语言结构的反事实,以更好地计算推论阶段的直接因果效应;3)我们进一步提出新的偏差方法,以得出更可靠的预测。在五个公共数据集中就信息发布三项信息通报任务进行的实验表明,CFIE模型在减轻虚假关联问题上的有效性。