The densest subgraph problem (DSG) aiming at finding an induced subgraph such that the average edge-weights of the subgraph is maximized, is a well-studied problem. However, when the input graph is a hypergraph, the existing notion of DSG fails to capture the fact that a hyperedge partially belonging to an induced sub-hypergraph is also a part of the sub-hypergraph. To resolve the issue, we suggest a function $f_e:\mathbb{Z}_{\ge0}\rightarrow \mathbb{R}_{\ge 0}$ to represent the partial edge-weight of a hyperedge $e$ in the input hypergraph $\mathcal{H}=(V,\mathcal{E},f)$ and formulate a generalized densest sub-hypergraph problem (GDSH) as $\max_{S\subseteq V}\frac{\sum_{e\in \mathcal{E}}{f_e(|e\cap S|)}}{|S|}$. We demonstrate that, when all the edge-weight functions are non-decreasing convex, GDSH can be solved in polynomial-time by the linear program-based algorithm, the network flow-based algorithm and the greedy $\frac{1}{r}$-approximation algorithm where $r$ is the rank of the input hypergraph. Finally, we investigate the computational tractability of GDSH where some edge-weight functions are non-convex.
翻译:最稠密的子系统问题 (DSG), 目的是寻找诱导的子系统问题, 使子系统的平均边缘重量最大化, 是一个很好研究的问题 。 但是, 当输入图是一个高写时, 现有的 DSG 概念无法捕捉一个事实, 一个部分属于诱导的子系统问题的高级部分是子系统问题的一部分 。 为了解决这个问题, 我们建议一个函数 $f_ e:\ mathb ⁇ 0\\\\\\rightrowr_ mathb{ R ⁇ ge{ 0.} 来代表输入高写表 $\ mathcal{H} (V,\mathccal{E} f) 中高尖的美元平均边端重量部分边缘重量 美元 。 我们证明, 当所有边重值的值值值值值值值在输入的 G- lical- kal- kal- kal- sal- sqal- saltraction 时, 以 IM- sal- comtradeal- dal- deliversal- dal- dal- dal- saltraction- saltraction- sal- slation- sleval- sal- sleval- sl- sl- slal- sal- sal- sal- sl- sleval- sl- sal- sl- sl- sl- sl- sl- sl- ASvial- sal- sl- AS- sl) 程序, 我们解算法- sl- sl- sl- sal- sal- sl- sl- sl- sal- sal- sal- sl- sal- sal- sal- sal- sal- sl- sl- sl- sl- sl- sl- sal- sal- sal- sal- 程序, 我们可以显示- sal- sal- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl- sl-