Tuning machine parameters of particle accelerators is a repetitive and time-consuming task that is challenging to automate. While many off-the-shelf optimization algorithms are available, in practice their use is limited because most methods do not account for safety-critical constraints in each iteration, such as loss signals or step-size limitations. One notable exception is safe Bayesian optimization, which is a data-driven tuning approach for global optimization with noisy feedback. We propose and evaluate a step-size limited variant of safe Bayesian optimization on two research facilities of the Paul Scherrer Institut (PSI): a) the Swiss Free Electron Laser (SwissFEL) and b) the High-Intensity Proton Accelerator (HIPA). We report promising experimental results on both machines, tuning up to 16 parameters subject to 224 constraints.
翻译:粒子加速器的导射机参数是一个重复和耗时的任务,对自动化来说是一项艰巨的任务。 虽然有许多现成的优化算法,但实际上它们的使用是有限的,因为大多数方法没有考虑到每次迭代的安全关键限制,如损失信号或级数限制。一个显著的例外是安全的贝叶斯优化,即数据驱动调控方法,以提供吵闹的反馈实现全球优化。我们提议并评价保罗·施雷尔研究所(PSI)的两个研究设施的安全贝叶斯优化的级级变体:a)瑞士自由电子激光器(SwissFEL)和b)高密度质子加速器(HIPA)。我们报告说,两台机器都有望取得实验性结果,在受224限制的情况下调高到16个参数。