Optimal experimental design is an essential subfield of statistics that maximizes the chances of experimental success. The D- and A-optimal design is a very challenging problem in the field of optimal design, namely minimizing the determinant and trace of the inverse Fisher information matrix. Due to the flexibility and ease of implementation, traditional evolutionary algorithms (EAs) are applied to deal with a small part of experimental optimization design problems without mathematical derivation and assumption. However, the current EAs remain the issues of determining the support point number, handling the infeasible weight solution, and the insufficient experiment. To address the above issues, this paper investigates differential evolution (DE) variants for finding D- and A-optimal designs on several different statistical models. The repair operation is proposed to automatically determine the support point by combining similar support points with their corresponding weights based on Euclidean distance and deleting the support point with less weight. Furthermore, the repair operation fixes the infeasible weight solution into the feasible weight solution. To enrich our optimal design experiments, we utilize the proposed DE variants to test the D- and A-optimal design problems on 12 statistical models. Compared with other competitor algorithms, simulation experiments show that LSHADE can achieve better performance on the D- and A-optimal design problems.
翻译:最佳实验设计是使实验成功机会最大化的基本统计的次领域。D-和A-最佳设计是最佳设计领域一个极具挑战性的问题,即最大限度地减少渔业信息矩阵的决定因素和痕量。由于执行的灵活性和简便性,传统的进化算法(EAs)被用于处理试验优化设计问题的一小部分,而没有数学衍生和假设。然而,目前的EA仍然是确定支持点数、处理不可行的重量解决方案和试验不足的问题。为了解决上述问题,本文件调查了在几个不同的统计模型中找到D-和A-最佳设计的差异性变异(DE)变异性。建议修理作业通过将类似的支持点与基于Euclidean距离的相应重量结合起来,并用较少的重量删除支持点。此外,修理操作将不可行的重量解决方案固定在可行的重量解决方案中。为了丰富我们的最佳设计实验,我们利用拟议的DE-最优的变异性模型来测试D-和A-最佳设计L-A-A-A-最优性模型的模型,在12个统计模型上进行更精确的模型模拟,比较A-A-A-A-A-A-A-A-A-A-AASASAL-ADISADIS模拟,从而显示12的统计模型测试问题。