Renewal equations are a popular approach used in modelling the number of new infections, i.e., incidence, in an outbreak. We develop a stochastic model of an outbreak based on a time-varying variant of the Crump-Mode-Jagers branching process. This model accommodates a time-varying reproduction number and a time-varying distribution for the generation interval. We then derive renewal-like integral equations for incidence, cumulative incidence and prevalence under this model. We show that the equations for incidence and prevalence are consistent with the so-called back-calculation relationship. We analyse two particular cases of these integral equations, one that arises from a Bellman-Harris process and one that arises from an inhomogeneous Poisson process model of transmission. We also show that the incidence integral equations that arise from both of these specific models agree with the renewal equation used ubiquitously in infectious disease modelling. We present a numerical discretisation scheme to solve these equations, and use this scheme to estimate rates of transmission from serological prevalence of SARS-CoV-2 in the UK and historical incidence data on Influenza, Measles, SARS and Smallpox.
翻译:更新方程式是一种流行的方法,用来模拟新感染的数量,即爆发爆发中的发病率。我们根据Crump-Mode-Jagers分流过程的时间变体,开发了爆发爆发的随机模型。这个模型包含一个时间变化的复制数字和代间时间变化的分布。然后我们在这个模型下为传染病的发病、累积发生率和流行度得出类似更新的组合方程式。我们展示了发病率和流行率的方程式与所谓的后计法关系相一致。我们分析了两个特定病例,一个是Bellman-Harris过程产生的,另一个是无血源的Poisson过程传播模式产生的。我们还表明,这两种模式产生的发生率整体方程式都同意在传染病建模中普遍使用的更新方程式。我们提出了一个数字分解方案,以解决这些方程式,并使用这个方案来估计从英国SAS-COV-2的血清流行率和SARS和SAR-SAR-Sylas的历史数据。