Building subject-independent deep learning models for EEG decoding faces the challenge of strong covariate-shift across different datasets, subjects and recording sessions. Our approach to address this difficulty is to explicitly align feature distributions at various layers of the deep learning model, using both simple statistical techniques as well as trainable methods with more representational capacity. This follows in a similar vein as covariance-based alignment methods, often used in a Riemannian manifold context. The methodology proposed herein won first place in the 2021 Benchmarks in EEG Transfer Learning (BEETL) competition, hosted at the NeurIPS conference. The first task of the competition consisted of sleep stage classification, which required the transfer of models trained on younger subjects to perform inference on multiple subjects of older age groups without personalized calibration data, requiring subject-independent models. The second task required to transfer models trained on the subjects of one or more source motor imagery datasets to perform inference on two target datasets, providing a small set of personalized calibration data for multiple test subjects.
翻译:为EEG解码而建立独立主题的深层次学习模式面临挑战,不同数据集、主题和记录会议之间有很强的共变式,我们应对这一困难的方法是,利用简单的统计技术以及更具代表性的训练方法,明确统一深层次学习模式不同层面的特征分布,同时使用简单的统计技术以及更具代表性的训练方法。这与往往在里伊曼多面背景下使用的基于共变的校正方法类似。本提议的方法在2021年EEG转移学习(BEETL)竞赛中赢得了第一位,这是在NeurIPS会议上主办的EG转移学习(BETL)竞赛中首次赢得的。竞赛的第一个任务就是睡眠阶段分类,要求转让受过训练的年轻主题模型,在没有个性化校准数据的情况下,对老年组的多个主题进行推论,要求采用独立模型。第二个任务是将受过训练的关于一个或更多来源的马达图像数据集主题的模型转让,以对两个目标数据集进行推断,为多个测试主题提供一套小的个化校准数据。