The simultaneous orthogonal matching pursuit (SOMP) is a popular, greedy approach for common support recovery of a row-sparse matrix. The support recovery guarantee of SOMP has been extensively studied under the noiseless scenario. Compared to the noiseless scenario, the performance analysis of noisy SOMP is still nascent, in which only the restricted isometry property (RIP)-based analysis has been studied. In this paper, we present the mutual incoherence property (MIP)-based study for performance analysis of noisy SOMP. Specifically, when noise is bounded, we provide the condition on which the exact support recovery is guaranteed in terms of the MIP. When noise is unbounded, we instead derive a bound on the successful recovery probability (SRP) that depends on the specific distribution of noise. Then we focus on the common case when noise is random Gaussian and show that the lower bound of SRP follows Tracy-Widom law distribution. The analysis reveals the number of measurements, noise level, the number of sparse vectors, and the value of MIP constant that are required to guarantee a predefined recovery performance. Theoretically, we show that the MIP constant of the measurement matrix must increase proportional to the noise standard deviation, and the number of sparse vectors needs to grow proportional to the noise variance. Finally, we extensively validate the derived analysis through numerical simulations.


翻译:同步或横向匹配( SOMP) 是常见的、贪婪的方法, 共同支持回收一排偏差的矩阵。 SOMP的支持回收保证已经在无噪音的情景下进行了广泛研究。 与无噪音的情景相比, 噪音SOMP的性能分析仍然刚刚开始, 仅研究有限制的异度属性分析。 在本文中, 我们展示了以相互不协调属性为基础的研究, 用于分析噪音SOMP的性能分析。 具体地说, 当噪音被捆绑起来时, 我们提供了保证准确支持回收的条件。 当噪音不受限制时, 我们只能根据取决于噪音具体分布的成功恢复概率( SRP) 进行约束。 然后, 我们只关注噪音随机高斯的常见性分析, 并显示SRP的下限范围更低, 遵循Tracy- Widom 法律的分布。 分析显示测量数量、 稀有矢量的矢量和MIP 常量的常量值, 保证事先确定恢复性能的恢复性能。 最后, 我们显示MIP 的定性压度测量和比例的矢量分析, 我们不断增长的矢量的矢量的矢量, 我们必须提高的矢量测量到比例的矢量分析。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
5GAA:C-V2X和DSRC的性能对比分析报告
智能交通技术
11+阅读 · 2019年3月8日
已删除
将门创投
5+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
5GAA:C-V2X和DSRC的性能对比分析报告
智能交通技术
11+阅读 · 2019年3月8日
已删除
将门创投
5+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员