Pose estimation plays a critical role in human-centered vision applications. However, it is difficult to deploy state-of-the-art HRNet-based pose estimation models on resource-constrained edge devices due to the high computational cost (more than 150 GMACs per frame). In this paper, we study efficient architecture design for real-time multi-person pose estimation on edge. We reveal that HRNet's high-resolution branches are redundant for models at the low-computation region via our gradual shrinking experiments. Removing them improves both efficiency and performance. Inspired by this finding, we design LitePose, an efficient single-branch architecture for pose estimation, and introduce two simple approaches to enhance the capacity of LitePose, including Fusion Deconv Head and Large Kernel Convs. Fusion Deconv Head removes the redundancy in high-resolution branches, allowing scale-aware feature fusion with low overhead. Large Kernel Convs significantly improve the model's capacity and receptive field while maintaining a low computational cost. With only 25% computation increment, 7x7 kernels achieve +14.0 mAP better than 3x3 kernels on the CrowdPose dataset. On mobile platforms, LitePose reduces the latency by up to 5.0x without sacrificing performance, compared with prior state-of-the-art efficient pose estimation models, pushing the frontier of real-time multi-person pose estimation on edge. Our code and pre-trained models are released at https://github.com/mit-han-lab/litepose.
翻译:Pose 估计在以人为中心的视觉应用中发挥着关键作用。 但是,由于计算成本高(每框架150多个GMACs以上),很难在资源限制的边缘设备上部署最先进的HRNet型估算模型。 在本文中,我们研究了实时多人估算的高效架构设计,在边缘进行。 我们发现, HRNet的高分辨率分支通过我们的逐渐缩小实验,对于低消耗区域的模型来说是多余的。 去除高分辨率分支既提高了效率,也提高了性能。 受此发现的影响, 我们设计了一个高效的 HRNet 结构, 一个高效的 HRNet 组合结构, 用于对资源限制的边缘设备进行估算, 并引入两种简单的方法, 以提高LitePose系统的能力, 包括Fusion Deconv Head 和大内层Cernal Conv Head。 将高分辨率分支的冗余性, 使比例感知特性与低管理量混杂。 大 Kernel Conls 显著提高了模型的能力和可容纳场,同时保持低计算成本。 只有25 %的计算递增量计算, 7个模型, 比级平面P- 平流- 平流- m40- silevilevil- set- deal- sideal- develilate- developmental-deal-deal-deal-deal- lax lax lax lax lax lax la- sal- developmental- supal- sal- sal- sloutal- slodealtial- sal- sal- sal- lax lad-deal-deal-deal-deal- sild- sild- slod- slod-d-d-d-deal-deal-d-d-d-d-d-dal-dal-dal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-lal-lad-deal-deal-deal-lamental-