With the rapid growth of research publications, empowering scientists to keep oversight over the scientific progress is of paramount importance. In this regard, the Leaderboards facet of information organization provides an overview on the state-of-the-art by aggregating empirical results from various studies addressing the same research challenge. Crowdsourcing efforts like PapersWithCode among others are devoted to the construction of Leaderboards predominantly for various subdomains in Artificial Intelligence. Leaderboards provide machine-readable scholarly knowledge that has proven to be directly useful for scientists to keep track of research progress. The construction of Leaderboards could be greatly expedited with automated text mining. This study presents a comprehensive approach for generating Leaderboards for knowledge-graph-based scholarly information organization. Specifically, we investigate the problem of automated Leaderboard construction using state-of-the-art transformer models, viz. Bert, SciBert, and XLNet. Our analysis reveals an optimal approach that significantly outperforms existing baselines for the task with evaluation scores above 90% in F1. This, in turn, offers new state-of-the-art results for Leaderboard extraction. As a result, a vast share of empirical AI research can be organized in the next-generation digital libraries as knowledge graphs.
翻译:随着研究出版物的迅速增长,赋予科学家对科学进步进行监督的权力至关重要。在这方面,信息组织的领头板面通过汇总各种研究解决相同研究挑战的经验性结果,对最新技术提供概览。PelesOneCode等众包工作致力于建造主要用于人工智能各子领域的头板。领导板提供机读的学术知识,这已证明对科学家跟踪研究进展有直接帮助。自动文本挖掘可大大加快头板的建设。这项研究为创建知识绘图学术信息组织的领头板提供了一种全面方法。具体地说,我们利用最新变压器模型,即Bert、SciBert和XLNet,来调查自动头板建造的问题。我们的分析表明,一种最佳方法大大超越了评估成绩超过F1中90%的现有基准。这反过来又可以提供新的最新结果,用于基于知识的学术信息组织。具体地说,我们利用最新变压器模型,即Bert、SciBert、SciBert和XLNet来调查自动头板建造头板的问题。我们的分析表明,一种最佳方法大大超出了F1中评估成绩超过90%的任务的现有基准。这反过来又提供了新的状态,为首席数据库提取知识库中的一项经验。