We study the limiting behavior of the mixed strategies that result from a general class of optimal no-regret learning strategies in a repeated game setting where the stage game is any 2 by 2 competitive game (for which all the Nash equilibria of the game are completely mixed) that may be zero-sum or non-zero-sum. We consider optimal no-regret strategies that are mean-based (i.e. information set at each step is the empirical average of the opponent's realized play) and monotonic (either non-decreasing or non-increasing) in their argument. We show that for any such choice of strategies, the limiting mixed strategies of the players cannot converge almost surely to any Nash equilibrium. This negative result is also shown to hold under a broad class of relaxations of these assumptions, which includes popular variants of Online-Mirror-Descent with optimism and/or adaptive step-sizes. Finally, we conjecture that the monotonicity assumption can be removed, and provide partial evidence for this conjecture. Our results identify the inherent stochasticity in players' realizations as a critical factor underlying this divergence, and demonstrate a crucial difference in outcomes between using the opponent's mixtures and realizations to make strategy updates.
翻译:我们研究混合战略的局限性行为,这些战略产生于在反复的游戏环境中的一整类最佳不回报学习战略,在这个游戏环境中,阶段游戏是任何2比2竞争游戏(所有Nash游戏的平衡完全混合),可能是零和或非零和,可能是零和/或非零和。我们考虑的是基于平均(即每一步所设定的信息是对手实际游戏的经验平均数)和单调(要么不决定,要么不增加)的组合战略。我们表明,对于任何这样的战略选择,玩家的限制性混合战略几乎肯定不可能与任何纳什平衡汇合在一起。这种负面结果也显示,这些假设的放松范围很大,其中包括以乐观和/或适应性梯度为基础的在线-米洛尔-白的流行变体。最后,我们推测,单调假设可以消除单调的假设,并为这种推论提供部分证据。我们的结果确定,对于任何这样的战略的选择,玩家的限制性混合战略几乎不可能完全融合到任何纳什均衡。这种负面结果也显示,这些假设包括以乐观的流行的流行变体实现这一变异和变异为关键变异的变变变体之间。