Designing recommendation systems that serve content aligned with time varying preferences requires proper accounting of the feedback effects of recommendations on human behavior and psychological condition. We argue that modeling the influence of recommendations on people's preferences must be grounded in psychologically plausible models. We contribute a methodology for developing grounded dynamic preference models. We demonstrate this method with models that capture three classic effects from the psychology literature: Mere-Exposure, Operant Conditioning, and Hedonic Adaptation. We conduct simulation-based studies to show that the psychological models manifest distinct behaviors that can inform system design. Our study has two direct implications for dynamic user modeling in recommendation systems. First, the methodology we outline is broadly applicable for psychologically grounding dynamic preference models. It allows us to critique recent contributions based on their limited discussion of psychological foundation and their implausible predictions. Second, we discuss implications of dynamic preference models for recommendation systems evaluation and design. In an example, we show that engagement and diversity metrics may be unable to capture desirable recommendation system performance.
翻译:设计符合不同时间偏好的内容的建议系统时,需要正确考虑建议对人类行为和心理状况的反馈效应。我们认为,建议对人偏好的影响建模必须以心理上可信的模式为基础。我们为开发有根有根的动态偏好模式提供了一种方法。我们用模型展示了这一方法,从心理学文献中捕捉了三种典型效应:简单探索、操作性调控和希多尼适应。我们进行模拟研究,以表明心理模型显示不同的行为,为系统设计提供信息。我们的研究对建议系统中的动态用户建模有两种直接的影响。首先,我们概述的方法广泛适用于具有心理基础的动态偏好模式。它使我们能够根据对心理基础的有限讨论及其不可信的预测来批评近期的贡献。第二,我们讨论动态偏好模型对建议系统评估和设计的影响。举例来说,我们表明参与和多样性指标可能无法捕捉到建议系统的适当性表现。