In this paper, we present an efficient and robust deep learning solution for novel view synthesis of complex scenes. In our approach, a 3D scene is represented as a light field, i.e., a set of rays, each of which has a corresponding color when reaching the image plane. For efficient novel view rendering, we adopt a 4D parameterization of the light field, where each ray is characterized by a 4D parameter. We then formulate the light field as a 4D function that maps 4D coordinates to corresponding color values. We train a deep fully connected network to optimize this implicit function and memorize the 3D scene. Then, the scene-specific model is used to synthesize novel views. Different from previous light field approaches which require dense view sampling to reliably render novel views, our method can render novel views by sampling rays and querying the color for each ray from the network directly, thus enabling high-quality light field rendering with a sparser set of training images. Our method achieves state-of-the-art novel view synthesis results while maintaining an interactive frame rate.
翻译:在本文中, 我们为复杂场景的新视角合成展示了一个高效和强健的深层次学习解决方案。 在我们的方法中, 3D 场景作为光场代表, 即一组光场, 每个光场在到达图像平面时都有相应的颜色。 为了高效的新式视图, 我们采用了光场的四维参数化, 每个光场的特征为4D 参数。 我们然后将光场设计成一个4D 函数, 绘制4D 对应的颜色值的坐标。 我们训练了一个深度连接的网络, 以优化这一隐含功能, 并映射 3D 场。 然后, 具体场景的模型用于合成新观点。 与以前的光场方法不同, 以前的光场方法需要密集的采样才能可靠地提供新观点, 我们的方法可以通过取样光谱和直接从网络查询每场景的颜色来产生新的观点, 从而使得高品质的光场能够用更稀薄的训练图像进行交配制。 我们的方法在保持互动框架率的同时, 取得了最新的观点合成结果 。