Recently, we witness a rapid increase in the use of machine learning in self-adaptive systems. Machine learning has been used for a variety of reasons, ranging from learning a model of the environment of a system during operation to filtering large sets of possible configurations before analysing them. While a body of work on the use of machine learning in self-adaptive systems exists, there is currently no systematic overview of this area. Such overview is important for researchers to understand the state of the art and direct future research efforts. This paper reports the results of a systematic literature review that aims at providing such an overview. We focus on self-adaptive systems that are based on a traditional Monitor-Analyze-Plan-Execute feedback loop (MAPE). The research questions are centred on the problems that motivate the use of machine learning in self-adaptive systems, the key engineering aspects of learning in self-adaptation, and open challenges. The search resulted in 6709 papers, of which 109 were retained for data collection. Analysis of the collected data shows that machine learning is mostly used for updating adaptation rules and policies to improve system qualities, and managing resources to better balance qualities and resources. These problems are primarily solved using supervised and interactive learning with classification, regression and reinforcement learning as the dominant methods. Surprisingly, unsupervised learning that naturally fits automation is only applied in a small number of studies. Key open challenges in this area include the performance of learning, managing the effects of learning, and dealing with more complex types of goals. From the insights derived from this systematic literature review we outline an initial design process for applying machine learning in self-adaptive systems that are based on MAPE feedback loops.
翻译:最近,我们看到在自适应系统中机器学习的使用迅速增加。机器学习出于各种原因,从在操作期间学习一个系统的环境模型到在分析之前过滤大量可能的配置,在自适应系统中机械学习的使用方面有一套工作,但目前没有这方面的系统概览。这种概览对于研究人员了解最新情况并指导今后的研究工作非常重要。本文报告了旨在提供这种概览的系统文献审查的结果。我们侧重于基于传统的Monitor-Analyze-Plan-Excute反馈循环(MAPE)的自适应系统环境模型,以及过滤大量可能的配置。研究问题集中在促使在自适应系统中使用机器学习机器学习的一整套问题,对于学习自我适应的关键工程方面,以及公开的挑战。在6709份论文中,仅保留了109份用于数据收集的公开文件。对所收集的数据的分析表明,机器学习大多用于更新系统质量和政策,从传统的Monitor-Analy-Alyze-Plan-Excute反馈循环(MAPE)中改进系统环境的模型。研究重点是在自适应系统中学习更精确的系统学习质量和精细化方法方面,这些是学习的精细化的学习方法。这些方法,这些方法的学习的精细的精细的精细的精细研究是学习方法,这些方法,这些方法的精细的精细的精细的精细的精。这些是学习的精细的精。这些是学习方法的精细的精。这些方法,这些方法的精细的精。这些方法的精。这些方法的精。这些方法的精细的精。这些方法是学习方法的精。这些方法的精细。这些方法的精细的精细的精细。这些方法的精。这些方法的精细的精细的精细的精细的精细的精细的精细的精细的精细。这些方法的精细的精细的精。这些方法学习方法的精。这些方法的精。这些方法的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精。这些方法的精。这些方法的精。这些方法学习方法的精细的精细的精细的精细的精细的精细的精。这些方法的精。这些方法学习方法的精