The channel attention mechanism is a useful technique widely employed in deep convolutional neural networks to boost the performance for image processing tasks, eg, image classification and image super-resolution. It is usually designed as a parameterized sub-network and embedded into the convolutional layers of the network to learn more powerful feature representations. However, current channel attention induces more parameters and therefore leads to higher computational costs. To deal with this issue, in this work, we propose a Parameter-Free Channel Attention (PFCA) module to boost the performance of popular image classification and image super-resolution networks, but completely sweep out the parameter growth of channel attention. Experiments on CIFAR-100, ImageNet, and DIV2K validate that our PFCA module improves the performance of ResNet on image classification and improves the performance of MSRResNet on image super-resolution tasks, respectively, while bringing little growth of parameters and FLOPs.


翻译:通道注意力机制是深度卷积神经网络中广泛应用于增强图像处理任务性能的有效技术,例如图像分类和图像超分辨率。它通常被设计成有参数的子网络,并嵌入到网络的卷积层中以学习更强大的特征表示。然而,当前的通道注意力引入更多的参数,因此导致更高的计算成本。为了应对这个问题,在这项工作中,我们提出了一个Parameter-Free Channel Attention (PFCA)模块,来提升常用的图像分类和图像超分辨率网络的性能,但完全消除了通道注意力的参数增长。在CIFAR-100、ImageNet和DIV2K的实验中验证了我们的PFCA模块分别改善了ResNet在图像分类上的性能,MSRResNet在图像超分辨率任务上的性能,同时带来了很少的参数和FLOPs增长。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关VIP内容
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员