The article is concerned with the problem of multi-step financial time series forecasting of Foreign Exchange (FX) rates. To address this problem, we introduce a parameter-free regression network termed RegPred Net. The exchange rate to forecast is treated as a stochastic process. It is assumed to follow a generalization of Brownian motion and the mean-reverting process referred to as the generalized Ornstein-Uhlenbeck (OU) process, with time-dependent coefficients. Using past observed values of the input time series, these coefficients can be regressed online by the cells of the first half of the network (Reg). The regressed coefficients depend only on - but are very sensitive to - a small number of hyperparameters required to be set by a global optimization procedure for which, Bayesian optimization is an adequate heuristic. Thanks to its multi-layered architecture, the second half of the regression network (Pred) can project time-dependent values for the OU process coefficients and generate realistic trajectories of the time series. Predictions can be easily derived in the form of expected values estimated by averaging values obtained by Monte Carlo simulation. The forecasting accuracy on a 100 days horizon is evaluated for several of the most important FX rates such as EUR/USD, EUR/CNY, and EUR/GBP. Our experimental results show that the RegPred Net significantly outperforms ARMA, ARIMA, LSTMs, and Autoencoder-LSTM models in terms of metrics measuring the absolute error (RMSE) and correlation between predicted and actual values (Pearson R, R-squared, MDA). Compared to black-box deep learning models such as LSTM, RegPred Net has better interpretability, simpler structure, and fewer parameters.
翻译:文章所关注的是对外汇汇率进行多步金融时间序列预测的问题。 为了解决这个问题, 我们引入了一个名为 RegPred Net 的无参数回归网络。 预测的汇率被视为一个随机过程。 假设它遵循了布朗运动的概括化, 以及被称为泛泛Ornstein- Uhlenbeck (OU) 进程的中位反向进程。 使用输入时间序列的过去观察值, 这些系数可以被网络上半部的细胞( Reg) 的绝对值在网上反向。 重新回归的系数仅取决于 — — 但非常敏感于 — 一个全球优化程序需要设定的少量超参数。 贝叶斯最优化是一个适当的超理论化过程。 由于它的多层次结构, 回归网络的第二半可以预测OwnP 时间序列的数值, 并产生更现实的直径直的线值 。 IML- RRMA 和 IMA 最显著的IMA IMA 和 IMU IMA 的预估测测的亚值, 通过IM IM IM IM 测测测测测测测测测测测 的 和 IMU 等 IMLVL/ IMA IM IM IML IM 的 的 的 IML IMLR 和 的 IM IM IM IM IM 的 等 的 IMLV IML 的 的 的 的 的 IM IM IM IM IM IM IM 的 度 度 度 度 度 度 度 度 。