Dense panoptic prediction is a key ingredient in many existing applications such as autonomous driving, automated warehouses or remote sensing. Many of these applications require fast inference over large input resolutions on affordable or even embedded hardware. We propose to achieve this goal by trading off backbone capacity for multi-scale feature extraction. In comparison with contemporaneous approaches to panoptic segmentation, the main novelties of our method are efficient scale-equivariant feature extraction, cross-scale upsampling through pyramidal fusion and boundary-aware learning of pixel-to-instance assignment. The proposed method is very well suited for remote sensing imagery due to the huge number of pixels in typical city-wide and region-wide datasets. We present panoptic experiments on Cityscapes, Vistas, COCO and the BSB-Aerial dataset. Our models outperform the state of the art on the BSB-Aerial dataset while being able to process more than a hundred 1MPx images per second on a RTX3090 GPU with FP16 precision and TensorRT optimization.


翻译:稠密的全景预测是许多应用的关键组成部分,如自主驾驶、自动化仓库或遥感。许多应用需要在可负担甚至是嵌入式硬件上对大输入分辨率进行快速推断。我们建议通过削减主干网络容量以换取多尺度特征提取来实现这个目标。与同期的全景分割方法相比,我们方法的主要特点是高效的尺度等变特征提取、金字塔融合的跨尺度上采样以及边缘感知的像素到实例分配学习。由于典型的市域和区域数据集中有大量的像素,因此我们的方法非常适合远程感应影像。我们在Cityscapes,Vistas,COCO和BSB-Aerial数据集上进行全景实验。我们的模型在BSB-Aerial数据集上优于现有技术水平,而且在RTX3090 GPU上,具有FP16精度和TensorRT优化,能够每秒处理超过100张1MPx图像。

0
下载
关闭预览

相关内容

【CVPR2022】端到端实时矢量边缘提取(E2EC)
专知会员服务
15+阅读 · 2022年4月14日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
专知会员服务
82+阅读 · 2020年9月27日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
BiSeNet:双向分割网络进行实时语义分割
统计学习与视觉计算组
22+阅读 · 2018年8月23日
CVPR 2017 | Tiny Faces 小人脸检测算法简介
极市平台
10+阅读 · 2018年2月1日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员