Building structures by low capability robots is a very recent research development. A robot (or a mobile agent) is designed as a deterministic finite automaton. The objective is to make a structure from a given distribution of materials (\textit{bricks}) in an infinite grid $Z\times Z$. The grid cells may contain a brick (\textit{full cells}) or it may be empty (\textit{empty cells}). The \textit{field}, a sub-graph induced by the full cells, is initially connected. At a given point in time, a robot can carry at most one brick. The robot can move in four directions (north, east, south, and west) and starts from a \textit{full cell}. The \textit{Manhattan distance} between the farthest full cells is the \textit{span} of the field. We consider the construction of a \textit{fort}, a structure with the minimum span and maximum covered area. On a square grid, a fort is a hollow rectangle with bricks on the perimeter. We show that the construction of such a fort can be done in $O(z^2)$ time -- with a matching lower bound $\Omega(z^2)$ -- where $z$ is the number of bricks present in the environment.
翻译:由低能力机器人建造的建筑结构是最近的一项研究发展。 机器人( 或移动代理器) 最初被设计为确定性的有限自动标尺。 目的是在无限的网格中, $ ⁇ 美元时 。 网格单元格可能包含砖块 (\ textit{ full cells}), 或者可能是空的 (\ textit{ spety cells}) 。 由全部单元格导出的子图(\ textit{ friet}) 最初被连接起来。 在给定的时间点, 机器人最多可以携带一块砖块。 机器人可以向四个方向( 北、 东、 和 西) 进行分配。 机器人可以从一个\ textitleit{ full 单元格} 开始。 网格中,\ textitilit{ { manhat 距离 可能是最远的整个单元格中的砖块 (\ textititit{ span} 。 我们考虑 $z} 的构造是最小的面积和最大覆盖区域的架构。 在平方格中, $_ rz 的砖块中, 可以用一个空的矩矩矩框 。