Large language models (LLMs) are transforming how students learn by providing readily available tools that can quickly augment or complete various learning activities with non-trivial performance. Similar paradigm shifts have occurred in the past with the introduction of search engines and Wikipedia, which replaced or supplemented traditional information sources such as libraries and books. This study investigates the potential for LLMs to represent the next shift in learning, focusing on their role in information discovery and synthesis compared to existing technologies, such as search engines. Using a within-subjects, counterbalanced design, participants learned new topics using a search engine (Google) and an LLM (ChatGPT). Post-task follow-up interviews explored students' reflections, preferences, pain points, and overall perceptions. We present analysis of their responses that show nuanced insights into when, why, and how students prefer LLMs over search engines, offering implications for educators, policymakers, and technology developers navigating the evolving educational landscape.
翻译:暂无翻译