Verifiable ledger databases protect data history against malicious tampering. Existing systems, such as blockchains and certificate transparency, are based on transparency logs -- a simple abstraction allowing users to verify that a log maintained by an untrusted server is append-only. They expose a simple key-value interface. Building a practical database from transparency logs, on the other hand, remains a challenge. In this paper, we explore the design space of verifiable ledger databases along three dimensions: abstraction, threat model, and performance. We survey existing systems and identify their two limitations, namely, the lack of transaction support and the inferior efficiency. We then present GlassDB, a distributed database that addresses these limitations under a practical threat model. GlassDB inherits the verifiability of transparency logs, but supports transactions and offers high performance. It extends a ledger-like key-value store with a data structure for efficient proofs, and adds a concurrency control mechanism for transactions. GlassDB batches independent operations from concurrent transactions when updating the core data structures. In addition, we design a new benchmark for evaluating verifiable ledger databases, by extending YCSB and TPC-C benchmarks. Using this benchmark, we compare GlassDB against four baselines: reimplemented versions of three verifiable databases, and a verifiable map backed by a transparency log. Experimental results demonstrate that GlassDB is an efficient, transactional, and verifiable ledger database.


翻译:可核实的分类账数据库保护数据历史不受恶意篡改。现有系统,例如块链和证书透明度,以透明日志为基础,使用户能够核查未经信任的服务器维护的日志是只附加的简单抽象数据。它们暴露了一个简单的关键价值界面。另一方面,从透明日志建立一个实用的数据库仍然是一个挑战。在本文件中,我们探索可核实的分类账数据库的设计空间,分三个方面:抽象、威胁模型和性能。我们调查现有系统并确定其两个限制,即缺乏交易支持和低效率。我们然后提出GlassDB,一个分散的数据库,在实际威胁模式下处理这些限制。GlasdB继承透明度日志的可核查性,但支持交易并提供高性能。它扩展一个具有数据结构的分类式关键价值仓库,用于有效证明,并增加交易的货币控制机制。GlassDB在更新核心数据结构时,从同时进行交易。此外,我们设计了一个新的评估可核实分类账数据库基准,即缺乏交易支持交易支持交易支持和TPC-C基准。我们用这个可核实的透明性数据库来比较一个可核实性数据库。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月12日
Arxiv
0+阅读 · 2023年4月11日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员