Data augmentation (DA) plays a critical role in improving the generalization of deep learning models. Recent works on automatically searching for DA policies from data have achieved great success. However, existing automated DA methods generally perform the search at the image level, which limits the exploration of diversity in local regions. In this paper, we propose a more fine-grained automated DA approach, dubbed Patch AutoAugment, to divide an image into a grid of patches and search for the joint optimal augmentation policies for the patches. We formulate it as a multi-agent reinforcement learning (MARL) problem, where each agent learns an augmentation policy for each patch based on its content together with the semantics of the whole image. The agents cooperate with each other to achieve the optimal augmentation effect of the entire image by sharing a team reward. We show the effectiveness of our method on multiple benchmark datasets of image classification and fine-grained image recognition (e.g., CIFAR-10, CIFAR-100, ImageNet, CUB-200-2011, Stanford Cars and FGVC-Aircraft). Extensive experiments demonstrate that our method outperforms the state-of-the-art DA methods while requiring fewer computational resources.
翻译:数据增强(DA)在改进深层学习模式的普及方面发挥着关键作用。最近关于从数据中自动搜索 DA 政策的工作取得了巨大成功。然而,现有的自动DA 方法一般在图像水平上进行搜索,这限制了对当地地区多样性的探索。在本文中,我们建议一种更精细的自动DA 方法,称为Patch Auto Agroup,将图像分为一个补丁网,并寻求对补丁的优化联合增强政策。我们把它设计成一个多试剂强化学习(MARL)问题,每个代理根据每个补丁的内容和整个图像的语义学习增强政策。代理人相互合作,通过共享团队奖励实现整个图像的最佳增强效果。我们展示了我们多种图像分类基准数据集和精细图像识别方法的有效性(如CIFAR-10、CIFAR-100、图像网、CUB-200-2011、斯坦福卡和FGVC-Aircraft)的实效。我们的方法在州-DAart的计算方法上要求更少的资源。