The conversational search paradigm introduces a step change over the traditional search paradigm by allowing users to interact with search agents in a multi-turn and natural fashion. The conversation flows naturally and is usually centered around a target field of knowledge. In this work, we propose a knowledge-driven answer generation approach for open-domain conversational search, where a conversation-wide entities' knowledge graph is used to bias search-answer generation. First, a conversation-specific knowledge graph is extracted from the top passages retrieved with a Transformer-based re-ranker. The entities knowledge-graph is then used to bias a search-answer generator Transformer towards information rich and concise answers. This conversation specific bias is computed by identifying the most relevant passages according to the most salient entities of that particular conversation. Experiments show that the proposed approach successfully exploits entities knowledge along the conversation, and outperforms a set of baselines on the search-answer generation task.
翻译:对话搜索模式在传统搜索模式上引入了一步变化, 允许用户以多方向和自然的方式与搜索代理进行互动。 对话自然流动, 通常以知识的目标领域为中心。 在此工作中, 我们提出开放域搜索的知识驱动解答生成方法 。 在开放域搜索中, 一个全对话实体的知识图用于偏差搜索- 解答生成。 首先, 从以变换器为基础的重新排序器检索到的顶端通道中提取一个特定对话知识图表。 然后, 各实体的知识绘图用于偏向搜索答题生成器变换器, 偏向信息丰富和简洁的答案。 这种特定对话偏差通过根据特定对话中最突出的实体来识别最相关的段落来计算。 实验显示, 拟议的方法成功地利用了对话过程中的实体知识, 并超越了搜索解答生成任务的基线。