Datasets and methods for cross-document coreference resolution (CDCR) focus on events or entities with strict coreference relations. They lack, however, annotating and resolving coreference mentions with more abstract or loose relations that may occur when news articles report about controversial and polarized events. Bridging and loose coreference relations trigger associations that may lead to exposing news readers to bias by word choice and labeling. For example, coreferential mentions of "direct talks between U.S. President Donald Trump and Kim" such as "an extraordinary meeting following months of heated rhetoric" or "great chance to solve a world problem" form a more positive perception of this event. A step towards bringing awareness of bias by word choice and labeling is the reliable resolution of coreferences with high lexical diversity. We propose an unsupervised method named XCoref, which is a CDCR method that capably resolves not only previously prevalent entities, such as persons, e.g., "Donald Trump," but also abstractly defined concepts, such as groups of persons, "caravan of immigrants," events and actions, e.g., "marching to the U.S. border." In an extensive evaluation, we compare the proposed XCoref to a state-of-the-art CDCR method and a previous method TCA that resolves such complex coreference relations and find that XCoref outperforms these methods. Outperforming an established CDCR model shows that the new CDCR models need to be evaluated on semantically complex mentions with more loose coreference relations to indicate their applicability of models to resolve mentions in the "wild" of political news articles.
翻译:例如,共同提及“美国总统唐纳德·特朗普(Donald Trump)和金(Kim)之间的直接会谈”等“美国总统唐纳德·特朗普(Donald Trump)和金(DRCR)之间的直接会谈”,如“经过几个月的热调言辞之后的一次特别会议”,或“解决世界问题的大好机会”等,它们缺乏对这一事件的更积极认识。通过文字选择和标签提高偏向意识的一个步骤是可靠地解决与高度法律多样性的共通性。我们提出一种叫作XCoref(XCorefref)的不受监督的方法,这种方法可以使新闻读者暴露于文字选择和标签的偏向性。例如“美国总统唐纳德·特朗普(Donald Trump)和金(Kim)和金(Kim)之间的直接会谈,例如“在几个月的热调言辞演讲之后举行的一次特别会议”或“解决世界问题的大机会”等,形成了对这一事件的更积极的看法。通过文字选择和标签来提高对偏向偏向偏向偏向的偏向性的认识。一个可靠地认识。一个通过文字选择和标签(例如,我们“CRA(CRereregreal) 表示“CRerereal) 一种“CR) 一种“我们向CD-creareabreareal decol) com rel) com rel(我们“Cre) ro) 一种“Creal deal) 一种“Creal(我们“Cre) 一种“Cre) ” 一种“Creal” 一种“Creaut) 一种“Creabreal(我们向CD(我们比较了一张” ro) ” 一种“CR) 一种“C) ” 一种“C) ” 一种“CR) 一种“CR) 一种“CR) 一种“CR) 一种“CR) 和CR) 一种“CR) 一种“CR” 一种“Cre” 一种“CR” 一种“CR” 一种“CR) 一种“我们“CR) ” 一种“Cre” 一种“Cre 一种“