While recent progress in video-text retrieval has been advanced by the exploration of better representation learning, in this paper, we present a novel multi-space multi-grained supervised learning framework, SUMA, to learn an aligned representation space shared between the video and the text for video-text retrieval. The shared aligned space is initialized with a finite number of concept clusters, each of which refers to a number of basic concepts (words). With the text data at hand, we are able to update the shared aligned space in a supervised manner using the proposed similarity and alignment losses. Moreover, to enable multi-grained alignment, we incorporate frame representations for better modeling the video modality and calculating fine-grained and coarse-grained similarity. Benefiting from learned shared aligned space and multi-grained similarity, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of SUMA over existing methods.


翻译:虽然通过探索更好的代表性学习,在视频文本检索方面最近取得了进展,但在本文件中,我们展示了一个新的多空间多空间多级监督学习框架(SUMA),以学习视频和视频文本检索文本之间共享的统一代表空间;共享统一空间初始化时有一定数量的概念组群,每个组群都提到一些基本概念(词);有了手头的文本数据,我们能够利用拟议的相似性和一致性损失,以监督的方式更新共享的统一空间;此外,为了能够实现多重调整,我们纳入了框架代表,以便更好地建模视频模式,计算细细细和粗细相似性;从共享共享空间和多级相似性中获益,对若干视频文本检索基准进行的广泛实验表明SUMA优于现有方法。

0
下载
关闭预览

相关内容

专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
26+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
26+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员