Face anti-spoofing (FAS) based on domain generalization (DG) has been recently studied to improve the generalization on unseen scenarios. Previous methods typically rely on domain labels to align the distribution of each domain for learning domain-invariant representations. However, artificial domain labels are coarse-grained and subjective, which cannot reflect real domain distributions accurately. Besides, such domain-aware methods focus on domain-level alignment, which is not fine-grained enough to ensure that learned representations are insensitive to domain styles. To address these issues, we propose a novel perspective for DG FAS that aligns features on the instance level without the need for domain labels. Specifically, Instance-Aware Domain Generalization framework is proposed to learn the generalizable feature by weakening the features' sensitivity to instance-specific styles. Concretely, we propose Asymmetric Instance Adaptive Whitening to adaptively eliminate the style-sensitive feature correlation, boosting the generalization. Moreover, Dynamic Kernel Generator and Categorical Style Assembly are proposed to first extract the instance-specific features and then generate the style-diversified features with large style shifts, respectively, further facilitating the learning of style-insensitive features. Extensive experiments and analysis demonstrate the superiority of our method over state-of-the-art competitors. Code will be publicly available at https://github.com/qianyuzqy/IADG.


翻译:人脸防欺诈 (FAS) 的领域泛化 (DG) 最近被研究用于提高在未知场景下的泛化能力。以往的方法通常依赖于领域标签来对齐每个领域的分布,学习领域不变的表示。然而,人工领域标签粗粒度和主观,不能准确反映真实的领域分布。此外,这些面向领域的方法关注领域级别的对齐,这并不足以确保学习到的表示对领域样式不敏感。为了解决这些问题,我们提出了一种新的思路,即在不需要领域标签的情况下,对实例级别进行特征对齐的 DG-FAS 方法。具体而言,我们提出了面向实例的领域泛化框架,通过减弱特征对实例特定样式的敏感性来学习可泛化的特征。具体而言,我们提出了非对称实例自适应白化来自适应消除样式敏感的特征相关性,提高泛化能力。此外,我们提出了动态核生成器和分类样式装配,在提取实例特定特征和生成具有大样式偏移的样式多样性特征后,进一步促进学习样式不敏感特征。广泛的实验和分析证明了我们的方法优于现有竞争方法。代码将公开在 https://github.com/qianyuzqy/IADG。

0
下载
关闭预览

相关内容

【AAAI 2022】基于数据分布生成的可预测概念漂移适应
专知会员服务
33+阅读 · 2022年1月12日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
【AAAI 2022】基于数据分布生成的可预测概念漂移适应
专知会员服务
33+阅读 · 2022年1月12日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员