Precision livestock farming optimizes livestock production through the use of sensor information and communication technologies to support decision making, proactively and near real-time. Among available technologies to monitor foraging behavior, the acoustic method has been highly reliable and repeatable, but can be subject to further computational improvements to increase precision and specificity of recognition of foraging activities. In this study, an algorithm called Jaw Movement segment-based Foraging Activity Recognizer (JMFAR) is proposed. The method is based on the computation and analysis of temporal, statistical and spectral features of jaw movement sounds for detection of rumination and grazing bouts. They are called JM-segment features because they are extracted from a sound segment and expect to capture JM information of the whole segment rather than individual JMs. Two variants of the method are proposed and tested: (i) the temporal and statistical features only JMFAR-ns; and (ii) a feature selection process (JMFAR-sel). The JMFAR was tested on signals registered in a free grazing environment, achieving an average weighted F1-score of 93%. Then, it was compared with a state-of-the-art algorithm, showing improved performance for estimation of grazing bouts (+19%). The JMFAR-ns variant reduced the computational cost by 25.4%, but achieved a slightly lower performance than the JMFAR. The good performance and low computational cost of JMFAR-ns supports the feasibility of using this algorithm variant for real-time implementation in low-cost embedded systems. The method presented within this publication is protected by a pending patent application: AR P20220100910.


翻译:精密牲畜饲养法通过使用传感信息和通信技术,积极和近近实时地支持决策,优化牲畜生产; 在监测饲料行为的现有技术中,声学方法高度可靠和可重复,但可进一步进行计算改进,以提高饲料活动认识的准确性和具体性; 在这次研究中,提议了一种名为 " 珠运动基于分部的饲料活动识别者 " (JMFAR)的算法; 这种方法以计算和分析2010年下巴运动的时间、统计和光谱特性为基础,以探测游荡和放牧情况; 这些技术被称为 " 运动组合 " 特征,因为它们是从音响部分提取的,预期获取整个部分而非单个JMS的信息。 提出并测试了两种方法的变式:(一) 时间和统计特性仅以Jaw运动区划活动识别者(JMRFAR)为主(JRFAR-sel),该方法基于自由放牧环境所记录的信号,以93%的平均加权保护F1值为基础。 然后,将其与正值缩缩缩缩缩算法的应用比起来,该方法以略为最低成本。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员