In this paper, we propose a method to identify identical commodities. In e-commerce scenarios, commodities are usually described by both images and text. By definition, identical commodities are those that have identical key attributes and are cognitively identical to consumers. There are two main challenges: 1) The extraction and fusion of multi-modal representation. 2) The ability to verify whether two commodities are identical by comparing the distance between representations with a threshold. To address the above problems, we propose an end-to-end identical commodity verification method based on self-adaptive thresholds. We use a dual-stream network to extract commodity embeddings and threshold embeddings separately and then concatenate them to obtain commodity representation. Our method is able to obtain different thresholds according to different commodities while maintaining the indexability of the entire commodity representation. We experimentally validate the effectiveness of our multimodal feature fusion and the advantages of self-adaptive thresholds. Besides, our method achieves an F1 score of 0.8936 and takes the 3rd place on the leaderboard for the second task of the CCKS-2022 Knowledge Graph Evaluation for Digital Commerce Competition. Code and pretrained models are available at https://github.com/hanchenchen/CCKS2022-track2-solution.


翻译:在本文中,我们提出一种方法来确定相同的商品。在电子商务情景中,商品通常通过图像和文字来描述。根据定义,相同的商品是具有相同关键特征的商品,在认知上与消费者相同。主要挑战有两大:(1) 多种模式代表的提取和融合。(2) 通过将表述与阈值之间的距离进行比较,核实两种商品是否完全相同的能力。为了解决上述问题,我们提议了一种基于自我适应阈值的终端到终端相同的商品核查方法。我们使用双流网络分别提取商品嵌入和阈值嵌入,然后将它们混为一体,以获得商品代表。我们的方法能够根据不同的商品获得不同的阈值,同时保持整个商品代表值的可索引性。我们实验性地验证了我们多式联运特征融合的有效性和自适应阈值的优势。此外,我们的方法达到了0.8936的F1分,并在CKS-2022数字商业竞争知识图形评价的第二个任务首列板上占据第三位位置。代码和预培训模型可在 https://gimbchen/chenrove。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员