Step-by-step reasoning approaches like chain-of-thought (CoT) have proved to be a very effective technique to induce reasoning capabilities in large language models. However, the success of the CoT approach depends primarily on model size, and often billion parameter-scale models are needed to get CoT to work. In this paper, we propose a knowledge distillation approach, that leverages the step-by-step CoT reasoning capabilities of larger models and distils these reasoning abilities into smaller models. Our approach Decompositional Distillation learns a semantic decomposition of the original problem into a sequence of subproblems and uses it to train two models: a) a problem decomposer that learns to decompose the complex reasoning problem into a sequence of simpler sub-problems and b) a problem solver that uses the intermediate subproblems to solve the overall problem. On a multi-step math word problem dataset (GSM8K), we boost the performance of GPT-2 variants up to 35% when distilled with our approach compared to CoT. We show that using our approach, it is possible to train a GPT-2-large model (775M) that can outperform a 10X larger GPT-3 (6B) model trained using CoT reasoning. Finally, we also demonstrate that our approach of problem decomposition can also be used as an alternative to CoT prompting, which boosts the GPT-3 performance by 40% compared to CoT prompts.


翻译:一步一步的推理方法,如思维链(CoT),已证明是一种非常有效的技术,可以引导大型语言模型的推理能力。然而,CoT方法的成功主要取决于模型大小,需要10亿个参数尺度模型才能使CoT发挥作用。在本文件中,我们建议了一种知识蒸馏方法,利用大型模型的逐步推理能力,将这些推理能力分解成较小的模型。我们的方法分解法学会了将最初的问题推入一个子问题序列的语义分解,并用它来培训两种模型:a)一个问题解析器,学会将复杂的推理问题分解成一个更简单的子问题序列;b)一个问题解析器,利用中间的子题解析能力解决整个问题。关于多步的数学词问题数据集(GSM8K),我们的方法是将GPT-2变异体提升到35 %,而我们的方法与COT相比,我们也可以用一个更大的推理学方法(7-M)来训练G-25。我们用G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-L-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-L-L-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-L-L-G-L-G-G-G-G-G-G-G-G-G-L-L-L-G-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-G-L-L-L-L-L-L-L-L-L-L-L-G-L-L-L-L-L-L-L-L-L-L-G-G-G-L-L-G-G-G-G-G-L-L-L-L

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员