Linear transformation model provides a general framework for analyzing censored survival data with covariates. The proportional hazards and proportional odds models are special cases of the linear transformation model. In biomedical studies, covariates with measurement error may occur in survival data. In this work, we propose a method to obtain estimators of the regression coefficients in the linear transformation model when the covariates are subject to measurement error. In the proposed method, we assume that instrumental variables are available. We develop counting process based estimating equations for finding the estimators of regression coefficients. We prove the large sample properties of the estimators using the martingale representation of the regression estimators. The finite sample performance of the estimators are evaluated through an extensive Monte Carlo simulation study. Finally, we illustrate the proposed method using an AIDS clinical trial (ACTG 175) data.
翻译:线性变换模型为用共变法分析经审查的生存数据提供了一个总框架。 比例危害和成比例差模型是线性变换模型的特殊情况。 在生物医学研究中, 测量误差可能会在生存数据中发生。 在这项工作中, 我们提出一种方法, 以便在共变法发生测量误差时, 获得线性变换模型回归系数的估算值。 在拟议方法中, 我们假设存在工具变量。 我们开发了基于估算公式的计算程序, 以寻找回归系数的估测值。 我们用回归估测仪的分数来证明估测员的大量样本特性。 估测员的有限抽样性能通过广泛的蒙特卡洛模拟研究进行评估。 最后, 我们用艾滋病临床试验数据( ACTG 175) 来说明拟议的方法 。