In this paper, we study edit distance (ED) and longest common subsequence (LCS) in the asymmetric streaming model, introduced by Saks and Seshadhri [SS13]. As an intermediate model between the random access model and the streaming model, this model allows one to have streaming access to one string and random access to the other string. Our first main contribution is a systematic study of space lower bounds for ED and LCS in the asymmetric streaming model. Previously, there are no explicitly stated results in this context, although some lower bounds about LCS can be inferred from the lower bounds for longest increasing subsequence (LIS) in [SW07][GG10][EJ08]. Yet these bounds only work for large alphabet size. In this paper, we develop several new techniques to handle ED in general and LCS for small alphabet size, thus establishing strong lower bounds for both problems. In particular, our lower bound for ED provides an exponential separation between edit distance and Hamming distance in the asymmetric streaming model. Our lower bounds also extend to LIS and longest non-decreasing sequence (LNS) in the standard streaming model. Together with previous results, our bounds provide an almost complete picture for these two problems. As our second main contribution, we give improved algorithms for ED and LCS in the asymmetric streaming model. For ED, we improve the space complexity of the constant factor approximation algorithms in [FHRS20][CJLZ20] from $\tilde{O}(\frac{n^\delta}{\delta})$ to $O(\frac{d^\delta}{\delta}\;\mathsf{polylog}(n))$, where $n$ is the length of each string and $d$ is the edit distance between the two strings. For LCS, we give the first $1/2+\epsilon$ approximation algorithm with space $n^{\delta}$ for any constant $\delta>0$, over a binary alphabet.
翻译:在本文中, 我们研究的是 由 Saks 和 Seshadharthri [SS13] 引入的不对称流模式中的距离( ED) 和最长常见子序列( LCS ) 。 作为随机访问模型和流模式之间的中间模型, 这个模型允许一个人流取一个字符串, 随机访问另一个字符串。 我们的第一个主要贡献是系统研究在不对称流模式中, ED 和 LCS 的空间下限。 在此背景下, 我们没有明确说明结果, 虽然可以从最长期增长的子序列( LIS ) 的下限中推断出一些关于 LCS 的下限。 然而, 这些边框只对大字母大小起作用。 在本文中, 我们开发了几种新的技术来处理 EDD 和 LCS 的小字母大小, 从而为这两个问题建立了强大的下限。 特别是, 我们对 EDM 的下限提供了一个指数的距离和 Hammile 之间的指数分解 。 我们的下框也延伸到了 HRS, 和 最远的轨道 。