In this paper, we tackle the problem of monocular bokeh synthesis, where we attempt to render a shallow depth of field image from a single all-in-focus image. Unlike in DSLR cameras, this effect can not be captured directly in mobile cameras due to the physical constraints of the mobile aperture. We thus propose a network-based approach that is capable of rendering realistic monocular bokeh from single image inputs. To do this, we introduce three new edge-aware Bokeh Losses based on a predicted monocular depth map, that sharpens the foreground edges while blurring the background. This model is then finetuned using an adversarial loss to generate a realistic Bokeh effect. Experimental results show that our approach is capable of generating a pleasing, natural Bokeh effect with sharp edges while handling complicated scenes.
翻译:在本文中,我们处理单眼波克合成的问题, 我们试图从单一的全焦点图像中使实地图像的深度浅。 与 DSLR 相机不同, 由于移动孔径的物理限制, 无法直接在移动相机中捕获这种效果。 因此我们提出了一个网络基方法, 能够从单个图像输入中产生现实的单眼波克。 为此, 我们根据预测的单眼深度地图引入了三个新的边缘觉醒波克失落, 该方法在模糊背景的同时将浅浅浅的表面边缘放大。 这个模型随后使用对抗性损失进行微调, 以产生现实的波克效应。 实验结果显示, 我们的方法能够在处理复杂场景的同时产生令人愉快的自然波克效应。