We consider pessimistic bilevel stochastic programs in which the follower maximizes over a fixed compact convex set a strictly convex quadratic function, whose Hessian depends on the leader's decision. The resulting random variable is evaluated by a convex risk measure. Under assumptions including real analyticity of the lower-level goal function, we prove existence of optimal solutions. We discuss an alternate model where the leader hedges against optimal lower-level solutions, and show that in this case solvability can be guaranteed under weaker conditions both in a deterministic and in a stochastic setting. The approach is applied to a mechanical shape optimization problem in which the leader decides on an optimal material distribution to minimize a tracking-type cost functional, whereas the follower chooses forces from an admissible set to maximize a compliance objective. The material distribution is considered to be stochastically perturbed in the actual construction phase. Computational results illustrate the bilevel optimization concept and demonstrate the interplay of follower and leader in shape design and testing.
翻译:我们考虑的是悲观的双层随机程序,在这种程序中,随从者在固定的紧凑的锥形中最大限度地利用固定的紧凑的锥形方形功能,这种功能是严格的锥形二次函数,其赫森取决于领导者的决定。由此产生的随机变量通过锥形风险衡量进行评估。在包括较低目标功能的真正分析在内的假设下,我们证明存在最佳的解决办法。我们讨论的是领导者对最佳低层次解决方案进行套期保值的替代模式,并表明在这种情况下,在确定和随机的较弱条件下,可以保证溶性。这种方法适用于机械形状优化问题,由领导者决定最佳物质分配,以尽量减少跟踪类型成本,而追随者则从可接受的组合中选择力量,以最大限度地实现合规目标。材料分配被认为是在实际施工阶段的分流体外扰动。计算结果说明了双层优化概念,并展示了跟踪者和领导者在形状设计和测试中的相互作用。