In this paper, we discuss a virtual element approximation for the modified transmission eigenvalue problem in inverse scattering for natural materials. In this case, due to the positive artificial diffusivity parameter in the considered problem, the sesquilinear form at the left end of the variational form is not coercive. We first demonstrate the well-posedness of the discrete source problem using the $\mathds{T}$-coercivity property, then provide the a priori error estimates for the approximate eigenspaces and eigenvalues, and finally reports several numerical examples. The numerical experiments show that the proposed method is effective
翻译:本文讨论了天然材料逆散射问题中修正传输特征值问题的虚拟元近似方法。在该问题中,由于所考虑问题中正的人工扩散参数的存在,变分形式左端的半双线性形式不具备强制性。我们首先利用$\\mathds{T}$-强制性性质证明了离散源问题的适定性,随后给出了近似特征空间与特征值的先验误差估计,最后报告了若干数值算例。数值实验表明,所提方法具有有效性。