Sampling-based motion planners perform exceptionally well in robotic applications that operate in high-dimensional space. However, most works often constrain the planning workspace rooted at some fixed locations, do not adaptively reason on strategy in narrow passages, and ignore valuable local structure information. In this paper, we propose Rapidly-exploring Random Forest (RRF*) -- a generalised multi-trees motion planner that combines the rapid exploring property of tree-based methods and adaptively learns to deploys a Bayesian local sampling strategy in regions that are deemed to be bottlenecks. Local sampling exploits the local-connectivity of spaces via Markov Chain random sampling, which is updated sequentially with a Bayesian proposal distribution to learns the local structure from past observations. The trees selection problem is formulated as a multi-armed bandit problem, which efficiently allocates resources on the most promising tree to accelerate planning runtime. RRF* learns the region that is difficult to perform tree extensions and adaptively deploys local sampling in those regions to maximise the benefit of exploiting local structure. We provide rigorous proofs of completeness and optimal convergence guarantees, and we experimentally demonstrate that the effectiveness of RRF*'s adaptive multi-trees approach allows it to performs well in a wide range of problems.


翻译:抽样运动规划者在高维空间操作的机器人应用方面表现特别出色。然而,大多数工作往往限制某些固定地点的规划工作空间,对狭小通道的战略没有适应性理性,忽视了宝贵的当地结构信息。在本文件中,我们提议快速探索随机森林(RRF* ) -- -- 将快速探索植树方法特性和适应性地学习在被认为是瓶颈的区域部署巴伊西亚地方取样战略的通用多树运动规划者结合起来。地方采样利用Markov链随机取样的空间的当地连接性,这种采样通过Bayesian提案的分发相继更新,从以往的观测中学习当地结构。树木选择问题被描述为一个多臂大带问题,在最有希望的树上有效分配资源,以加快规划的运行时间。RRF* 学习了难以进行树木扩展的区域,在这些地区以适应性方式部署当地取样战略,以尽量扩大利用当地结构的好处。我们提供了完整和最佳汇合方法的严格证明,我们实验性地展示了RRRRR的多样化方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
114+阅读 · 2020年10月8日
专知会员服务
53+阅读 · 2020年9月7日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
3+阅读 · 2018年10月5日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
114+阅读 · 2020年10月8日
专知会员服务
53+阅读 · 2020年9月7日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员