Scene graph generation is an important visual understanding task with a broad range of vision applications. Despite recent tremendous progress, it remains challenging due to the intrinsic long-tailed class distribution and large intra-class variation. To address these issues, we introduce a novel confidence-aware bipartite graph neural network with adaptive message propagation mechanism for unbiased scene graph generation. In addition, we propose an efficient bi-level data resampling strategy to alleviate the imbalanced data distribution problem in training our graph network. Our approach achieves superior or competitive performance over previous methods on several challenging datasets, including Visual Genome, Open Images V4/V6, demonstrating its effectiveness and generality.
翻译:尽管最近取得了巨大进展,但由于长期的阶级分布和阶级内部差异很大,这仍然具有挑战性。为了解决这些问题,我们引入了一个新的有自信的双面图形神经网络,为公正的场景图形生成提供适应性信息传播机制。此外,我们提出了有效的双级数据重组战略,以在培训我们的图表网络时缓解不平衡的数据分布问题。我们的方法比以前在几个具有挑战性的数据集,包括视觉基因组、开放图像V4/V6上的方法取得了优异或竞争性的绩效,显示了其有效性和一般性。