Traditional models of active learning assume a learner can directly manipulate or query a covariate $X$ in order to study its relationship with a response $Y$. However, if $X$ is a feature of a complex system, it may be possible only to indirectly influence $X$ by manipulating a control variable $Z$, a scenario we refer to as Indirect Active Learning. Under a nonparametric model of Indirect Active Learning with a fixed budget, we study minimax convergence rates for estimating the relationship between $X$ and $Y$ locally at a point, obtaining different rates depending on the complexities and noise levels of the relationships between $Z$ and $X$ and between $X$ and $Y$. We also identify minimax rates for passive learning under comparable assumptions. In many cases, our results show that, while there is an asymptotic benefit to active learning, this benefit is fully realized by a simple two-stage learner that runs two passive experiments in sequence.


翻译:传统的主动学习模式假定学习者可以直接操纵或询问共同变换美元,以便研究与应答美元的关系。然而,如果美元是复杂系统的一个特点,则可能只能通过操纵控制变量Z美元(我们称之为间接积极学习)间接影响X美元(我们称之为间接积极学习的假想)。根据非对称模式,以固定预算间接积极学习,我们研究一个点估算X美元与当地美元之间关系的微量峰值趋同率,根据Z美元与X美元之间的关系的复杂性和噪音程度以及X美元与Y美元之间的关系获得不同的利率。我们还确定了在类似假设下被动学习的微量成交率。在许多情况下,我们的结果显示,虽然积极学习有一个无损的收益,但通过一个按顺序进行两次被动实验的简单两阶段学习者完全实现了这一效益。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Learning 4DVAR inversion directly from observations
Arxiv
0+阅读 · 2022年11月17日
Arxiv
0+阅读 · 2022年11月16日
Arxiv
11+阅读 · 2022年9月1日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关VIP内容
相关资讯
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员