Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly-initialized parametrized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable natural evolutionary strategies, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver (VQE) and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of evolutionary strategies to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients.
翻译:自然进化战略(NES)是一个没有梯度的黑盒优化算法的组合。 本研究展示了这些算法在消失梯度区域用于优化随机初始的准米化量子电路(PQCs)的使用情况。 我们显示,使用 NES 梯度梯度估计指数下降指数可以减缓差异。 我们实施了两种具体方法,即指数和可分离的自然进化战略,以优化PQCs的参数并将其与标准梯度下降进行比较。 我们运用这些方法对两种不同的地面状态能源估算问题进行了应用,即使用变异量量单质(VQE)和不同深度和长度的电路进行状态准备。 我们还对深度较大的电路进行了批次优化,以便将进化战略的使用扩大到更多的参数。 我们在上述所有情况下都实现了与最新优化技术相近的精度,而电路量评估数量较少。我们的经验结果表明,可以使用NES作为一种混合工具,与其他基于梯度的方法相配合,在梯度消失梯度的区域优化深量电路。