In this paper, we study scheduling in multi-class, multi-server queueing systems with stochastic rewards of job-server assignments following a bilinear model in feature vectors characterizing jobs and servers. A bilinear model allows capturing pairwise interactions of features of jobs and servers. Our goal is regret minimization for the objective of maximizing cumulative reward of job-server assignments over a time horizon against an oracle policy that has complete information about system parameters, while maintaining queueing system stable and allowing for different job priorities. The scheduling problem we study is motivated by various applications including matching in online platforms, such as crowdsourcing and labour platforms, and cluster computing systems. We study a scheduling algorithm based on weighted proportionally fair allocation criteria augmented with marginal costs for reward maximization, along with a linear bandit algorithm for estimating rewards of job-server assignments. For a baseline setting, in which jobs have identical mean service times, we show that our algorithm has a sub-linear regret, as well as a sub-linear bound on the mean queue length, in the time horizon. We show that similar bounds hold under more general assumptions, allowing for mean service times to be different across job classes and a time-varying set of server classes. We also show stability conditions for distributed iterative algorithms for computing allocations, which is of interest in large-scale system applications. We demonstrate the efficiency of our algorithms by numerical experiments using both synthetic randomly generated data and a real-world cluster computing data trace.


翻译:在本文中,我们研究的是多级、多服务器的排队系统中的日程安排,这种排队系统中的工作服务器分配有随机的奖励,其依据是描述工作和服务器特点的特性矢量和服务器的双线性模式的双线性模式。双线性模式可以捕捉工作与服务器特征的对等互动。我们的目标是,为在时间跨度上最大限度地增加对工作服务器分配的累积奖励的目标而遗憾最小化。对于一个具有系统参数完整信息、同时保持排队系统稳定并允许不同工作优先次序的甲骨牌政策,我们研究的日程安排问题是由各种应用程序引起的,包括匹配在线平台,例如众包和劳工平台,以及集群计算系统等。我们研究的是基于加权比例公平分配标准的日程安排算法,以奖励最大化的边际成本为基础,同时用线性土匪式的算法计算工作任务分配奖赏额。对于一个基准设置,即工作具有相同的平均服务时间间隔,我们算法的亚线性偏差,以及在时间跨线性排队长度的子线性线性排列问题。我们发现,在更一般的系统假设下也有相似的界限,在比较公平的分配中,让我们的递定的递定的机级的递定值的递算算值的日历中, 也显示着一个比值的日历值的日历值的日历值的日历值的日历值的日历值的日历值的等级,让我们在不同的计算。

0
下载
关闭预览

相关内容

双线性模型(Bilinear model)是介于常规ARMA模型和随机系数ARMA 模型之间的一种模型。由Granger&Anderson(1978)提出,双线性模型优点在于保留了ARMA 模型简单结构的大部分特性。双线性模型能够刻画具有偶然爆发特征的时间序列,它的另一种常见形式是仅具有AR 结构
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员