Retrieving a signal from the Fourier transform of its third-order statistics or bispectrum arises in a wide range of signal processing problems. Conventional methods do not provide a unique inversion of bispectrum. In this paper, we present a an approach that uniquely recovers signals with finite spectral support (band-limited signals) from at least $3B$ measurements of its bispectrum function (BF), where $B$ is the signal's bandwidth. Our approach also extends to time-limited signals. We propose a two-step trust region algorithm that minimizes a non-convex objective function. First, we approximate the signal by a spectral algorithm. Then, we refine the attained initialization based upon a sequence of gradient iterations. Numerical experiments suggest that our proposed algorithm is able to estimate band/time-limited signals from its BF for both complete and undersampled observations.
翻译:正在从Fourier转换其第三顺序统计或双光谱的信号中获取信号, 其第三顺序统计或双光谱在一系列广泛的信号处理问题中产生。 常规方法并不提供两光谱的独特反转。 在本文中, 我们提出了一个方法, 以有限的光谱支持( 带- 带- 带- 信号) 从至少3B美元测量其双光谱功能( BF) 中恢复信号, 其中$B$是信号的带宽。 我们的方法还延伸至有时间限制的信号。 我们提出一个两步信任区域算法, 最大限度地减少非电流目标功能。 首先, 我们用光谱算法来比较信号。 然后, 我们根据一系列梯度迭代来改进已经实现的初始化。 数字实验表明, 我们拟议的算法能够估计其BF的带/ 时间- 有限信号, 用于完整和过低的观测 。