Joint caching and transmission optimization problem is challenging due to the deep coupling between decisions. This paper proposes an iterative distributed multi-agent learning approach to jointly optimize caching and transmission. The goal of this approach is to minimize the total transmission delay of all users. In this iterative approach, each iteration includes caching optimization and transmission optimization. A multi-agent reinforcement learning (MARL)-based caching network is developed to cache popular tasks, such as answering which files to evict from the cache and which files to storage. Based on the cached files of the caching network, the transmission network transmits cached files for users by single transmission (ST) or joint transmission (JT) with multi-agent Bayesian learning automaton (MABLA) method. And then users access the edge servers with the minimum transmission delay. The experimental results demonstrate the performance of the proposed multi-agent learning approach.


翻译:联合缓存和传输优化问题具有挑战性,因为决定之间有着深刻的结合。本文件建议采用迭代分布式多试剂学习方法,共同优化缓存和传输。这一方法的目标是最大限度地减少所有用户的完全传输延迟。在这种迭代方法中,每种迭代方法包括缓存优化和传输优化。以多试剂强化学习(MARL)为基础的缓存网络是为了缓存流行任务,例如回答哪些文件要从缓存中取出,哪些文件要储存。根据缓存网络的缓存文件,传输网络通过一次性传输(ST)或联合传输(JT)方法为用户传输缓存文件。然后,用户在最小传输延迟的情况下访问边缘服务器。实验结果显示了拟议的多试剂学习方法的绩效。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员