Inspired by the UNet architecture of semantic image segmentation, we propose a lightweight UNet using depthwise separable convolutions (DSUNet) for end-to-end learning of lane detection and path prediction (PP) in autonomous driving. We also design and integrate a PP algorithm with convolutional neural network (CNN) to form a simulation model (CNN-PP) that can be used to assess CNN's performance qualitatively, quantitatively, and dynamically in a host agent car driving along with other agents all in a real-time autonomous manner. DSUNet is 5.16x lighter in model size and 1.61x faster in inference than UNet. DSUNet-PP outperforms UNet-PP in mean average errors of predicted curvature and lateral offset for path planning in dynamic simulation. DSUNet-PP outperforms a modified UNet in lateral error, which is tested in a real car on real road. These results show that DSUNet is efficient and effective for lane detection and path prediction in autonomous driving.
翻译:受 Unet 语义图像分割结构的启发,我们提出一个轻量的UNet, 使用深度可分离的混成( DSUNet ), 用于在自动驾驶中从端到端学习车道探测和路径预测( PP) 。 我们还设计并结合进进式神经网络( CNN), 以形成一个模拟模型( CNN- PP), 可用于评估CNN 与其他代理汽车一起以实时自主方式驾驶的载体汽车的质量、 数量和动态性地评估性能。 DSUNet 的型号为5. 16x 轻度, 比 UNet 型号为1.61x 的推断速度更快。 DSUNet- PP 优于UP UNet- PP, 平均的预测曲线错误, 以及动态模拟中路径规划的横向偏差。 DSUNet- PPP 在横向错误中优于经修改的UNet, 在真实路上的汽车上测试。 这些结果显示DSUNet 在自动驾驶中, 的车道探测和路径预测是有效和有效的。