In this paper, we explore an interesting question of what can be obtained from an $8\times8$ pixel video sequence. Surprisingly, it turns out to be quite a lot. We show that when we process this $8\times8$ video with the right set of audio and image priors, we can obtain a full-length, $256\times256$ video. We achieve this $32\times$ scaling of an extremely low-resolution input using our novel audio-visual upsampling network. The audio prior helps to recover the elemental facial details and precise lip shapes and a single high-resolution target identity image prior provides us with rich appearance details. Our approach is an end-to-end multi-stage framework. The first stage produces a coarse intermediate output video that can be then used to animate single target identity image and generate realistic, accurate and high-quality outputs. Our approach is simple and performs exceedingly well (an $8\times$ improvement in FID score) compared to previous super-resolution methods. We also extend our model to talking-face video compression, and show that we obtain a $3.5\times$ improvement in terms of bits/pixel over the previous state-of-the-art. The results from our network are thoroughly analyzed through extensive ablation experiments (in the paper and supplementary material). We also provide the demo video along with code and models on our website: \url{http://cvit.iiit.ac.in/research/projects/cvit-projects/talking-face-video-upsampling}.


翻译:在本文中, 我们探索了一个有趣的问题, 从 8\ times8$ 像素视频序列中可以获得什么。 令人惊讶的是, 它被证明是相当多的。 我们显示, 当我们处理这个8\ time8$的视频时, 并配有一套正确的音频和图像前置, 我们可以得到一个全长的, 256\ times256$的视频。 我们通过我们的新视听上映网络, 实现了一个非常低分辨率输入的32\time$的缩放。 之前的音频有助于恢复元素面部细节和精确的嘴唇形状, 之前的单高分辨率目标图像为我们提供了丰富的外观细节。 我们的方法是一个端到端的多阶段框架。 我们的方法是一个粗糙的中间输出视频视频视频视频视频, 然后用来模拟单一目标身份图像, 产生现实、准确和高质量的输出。 我们的方法简单, 与以往的超级解析方法相比, 我们的平面平面图像缩缩图比模型, 并显示我们从前一线/ 的网络/ 直径路路路路段/ 的模型 改进结果 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员