Church's simple type theory is often deemed too simple for elaborate mathematical constructions. In particular, doubts were raised whether schemes could be formalized in this setting and a challenge was issued. Schemes are sophisticated mathematical objects in algebraic geometry introduced by Alexander Grothendieck in 1960. In this article we report on a successful formalization of schemes in the simple type theory of the proof assistant Isabelle/HOL, and we discuss the design choices which make this work possible. We show in the particular case of schemes how the powerful dependent types of Coq or Lean can be traded for a minimalist apparatus called locales.
翻译:教会的简单类型理论往往被认为过于简单,无法进行精细的数学构造。 特别是,有人质疑在这一背景下能否正式制定计划,并提出了挑战。 计划是1960年亚历山大·格罗滕迪克引进的代数几何学中的精密数学物体。 在本条中,我们用证明助理伊莎贝尔/HOL的简单类型理论来报告计划的成功正规化,我们讨论了使这项工作得以进行的设计选择。 在特定情况下,我们展示了如何将强大的依赖型Coq或Lean的系统交易给称为本地的小型设备的具体例子。